All Projects / Keras v2.2.2

Last Updated by: Francois Chollet

keras_os/scmi_30.20.55.1_8767/keras-code/docs/autogen.py

[Python]
  • Author: Masoud Kazemi
  • License: apache2
  • Date:
# -*- coding: utf-8 -*-
'''
General documentation architecture:
Home
Index
- Getting started
Getting started with the sequential model
Getting started with the functional api
FAQ
- Models
About Keras models
explain when one should use Sequential or functional API
explain compilation step
explain weight saving, weight loading
explain serialization, deserialization
Sequential
Model (functional API)
- Layers
About Keras layers
explain common layer functions: get_weights, set_weights, get_config
explain input_shape
explain usage on non-Keras tensors
Core Layers
Convolutional Layers
Pooling Layers
Locally-connected Layers
Recurrent Layers
Embedding Layers
Merge Layers
Advanced Activations Layers
Normalization Layers
Noise Layers
Layer Wrappers
Writing your own Keras layers
- Preprocessing
Sequence Preprocessing
Text Preprocessing
Image Preprocessing
Losses
Metrics
Optimizers
Activations
Callbacks
Datasets
Applications
Backend
Initializers
Regularizers
Constraints
Visualization
Scikit-learn API
Utils
Contributing
'''
from __future__ import print_function
from __future__ import unicode_literals
import re
import inspect
import os
import shutil
import keras
from keras import utils
from keras import layers
from keras.layers import advanced_activations
from keras.layers import noise
from keras.layers import wrappers
from keras import initializers
from keras import optimizers
from keras import callbacks
from keras import models
from keras import losses
from keras import metrics
from keras import backend
from keras import activations
from keras import preprocessing
import sys
if sys.version[0] == '2':
reload(sys)
sys.setdefaultencoding('utf8')
EXCLUDE = {
'Optimizer',
'Wrapper',
'get_session',
'set_session',
'CallbackList',
'serialize',
'deserialize',
'get',
'set_image_dim_ordering',
'normalize_data_format',
'image_dim_ordering',
'get_variable_shape',
}
# For each class to document, it is possible to:
# 1) Document only the class: [classA, classB, ...]
# 2) Document all its methods: [classA, (classB, "*")]
# 3) Choose which methods to document (methods listed as strings):
# [classA, (classB, ["method1", "method2", ...]), ...]
# 4) Choose which methods to document (methods listed as qualified names):
# [classA, (classB, [module.classB.method1, module.classB.method2, ...]), ...]
PAGES = [
{
'page': 'models/sequential.md',
'methods': [
models.Sequential.compile,
models.Sequential.fit,
models.Sequential.evaluate,
models.Sequential.predict,
models.Sequential.train_on_batch,
models.Sequential.test_on_batch,
models.Sequential.predict_on_batch,
models.Sequential.fit_generator,
models.Sequential.evaluate_generator,
models.Sequential.predict_generator,
models.Sequential.get_layer,
],
},
{
'page': 'models/model.md',
'methods': [
models.Model.compile,
models.Model.fit,
models.Model.evaluate,
models.Model.predict,
models.Model.train_on_batch,
models.Model.test_on_batch,
models.Model.predict_on_batch,
models.Model.fit_generator,
models.Model.evaluate_generator,
models.Model.predict_generator,
models.Model.get_layer,
]
},
{
'page': 'layers/core.md',
'classes': [
layers.Dense,
layers.Activation,
layers.Dropout,
layers.Flatten,
layers.Input,
layers.Reshape,
layers.Permute,
layers.RepeatVector,
layers.Lambda,
layers.ActivityRegularization,
layers.Masking,
layers.SpatialDropout1D,
layers.SpatialDropout2D,
layers.SpatialDropout3D,
],
},
{
'page': 'layers/convolutional.md',
'classes': [
layers.Conv1D,
layers.Conv2D,
layers.SeparableConv1D,
layers.SeparableConv2D,
layers.Conv2DTranspose,
layers.Conv3D,
layers.Cropping1D,
layers.Cropping2D,
layers.Cropping3D,
layers.UpSampling1D,
layers.UpSampling2D,
layers.UpSampling3D,
layers.ZeroPadding1D,
layers.ZeroPadding2D,
layers.ZeroPadding3D,
],
},
{
'page': 'layers/pooling.md',
'classes': [
layers.MaxPooling1D,
layers.MaxPooling2D,
layers.MaxPooling3D,
layers.AveragePooling1D,
layers.AveragePooling2D,
layers.AveragePooling3D,
layers.GlobalMaxPooling1D,
layers.GlobalAveragePooling1D,
layers.GlobalMaxPooling2D,
layers.GlobalAveragePooling2D,
layers.GlobalMaxPooling3D,
layers.GlobalAveragePooling3D,
],
},
{
'page': 'layers/local.md',
'classes': [
layers.LocallyConnected1D,
layers.LocallyConnected2D,
],
},
{
'page': 'layers/recurrent.md',
'classes': [
layers.RNN,
layers.SimpleRNN,
layers.GRU,
layers.LSTM,
layers.ConvLSTM2D,
layers.SimpleRNNCell,
layers.GRUCell,
layers.LSTMCell,
layers.CuDNNGRU,
layers.CuDNNLSTM,
],
},
{
'page': 'layers/embeddings.md',
'classes': [
layers.Embedding,
],
},
{
'page': 'layers/normalization.md',
'classes': [
layers.BatchNormalization,
],
},
{
'page': 'layers/advanced-activations.md',
'all_module_classes': [advanced_activations],
},
{
'page': 'layers/noise.md',
'all_module_classes': [noise],
},
{
'page': 'layers/merge.md',
'classes': [
layers.Add,
layers.Subtract,
layers.Multiply,
layers.Average,
layers.Maximum,
layers.Concatenate,
layers.Dot,
],
'functions': [
layers.add,
layers.subtract,
layers.multiply,
layers.average,
layers.maximum,
layers.concatenate,
layers.dot,
]
},
{
'page': 'preprocessing/sequence.md',
'functions': [
preprocessing.sequence.pad_sequences,
preprocessing.sequence.skipgrams,
preprocessing.sequence.make_sampling_table,
],
'classes': [
preprocessing.sequence.TimeseriesGenerator,
]
},
{
'page': 'preprocessing/image.md',
'classes': [
(preprocessing.image.ImageDataGenerator, '*')
]
},
{
'page': 'preprocessing/text.md',
'functions': [
preprocessing.text.hashing_trick,
preprocessing.text.one_hot,
preprocessing.text.text_to_word_sequence,
],
'classes': [
preprocessing.text.Tokenizer,
]
},
{
'page': 'layers/wrappers.md',
'all_module_classes': [wrappers],
},
{
'page': 'metrics.md',
'all_module_functions': [metrics],
},
{
'page': 'losses.md',
'all_module_functions': [losses],
},
{
'page': 'initializers.md',
'all_module_functions': [initializers],
'all_module_classes': [initializers],
},
{
'page': 'optimizers.md',
'all_module_classes': [optimizers],
},
{
'page': 'callbacks.md',
'all_module_classes': [callbacks],
},
{
'page': 'activations.md',
'all_module_functions': [activations],
},
{
'page': 'backend.md',
'all_module_functions': [backend],
},
{
'page': 'utils.md',
'functions': [utils.to_categorical,
utils.normalize,
utils.get_file,
utils.print_summary,
utils.plot_model,
utils.multi_gpu_model],
'classes': [utils.CustomObjectScope,
utils.HDF5Matrix,
utils.Sequence],
},
]
ROOT = 'http://keras.io/'
def get_function_signature(function, method=True):
wrapped = getattr(function, '_original_function', None)
if wrapped is None:
signature = inspect.getargspec(function)
else:
signature = inspect.getargspec(wrapped)
defaults = signature.defaults
if method:
args = signature.args[1:]
else:
args = signature.args
if defaults:
kwargs = zip(args[-len(defaults):], defaults)
args = args[:-len(defaults)]
else:
kwargs = []
st = '%s.%s(' % (clean_module_name(function.__module__), function.__name__)
for a in args:
st += str(a) + ', '
for a, v in kwargs:
if isinstance(v, str):
v = '\'' + v + '\''
st += str(a) + '=' + str(v) + ', '
if kwargs or args:
signature = st[:-2] + ')'
else:
signature = st + ')'
return post_process_signature(signature)
def get_class_signature(cls):
try:
class_signature = get_function_signature(cls.__init__)
class_signature = class_signature.replace('__init__', cls.__name__)
except (TypeError, AttributeError):
# in case the class inherits from object and does not
# define __init__
class_signature = "{clean_module_name}.{cls_name}()".format(
clean_module_name=clean_module_name(cls.__module__),
cls_name=cls.__name__
)
return post_process_signature(class_signature)
def post_process_signature(signature):
parts = re.split(r'\.(?!\d)', signature)
if len(parts) >= 4:
if parts[1] == 'layers':
signature = 'keras.layers.' + '.'.join(parts[3:])
if parts[1] == 'utils':
signature = 'keras.utils.' + '.'.join(parts[3:])
if parts[1] == 'backend':
signature = 'keras.backend.' + '.'.join(parts[3:])
return signature
def clean_module_name(name):
if name.startswith('keras_applications'):
name = name.replace('keras_applications', 'keras.applications')
if name.startswith('keras_preprocessing'):
name = name.replace('keras_preprocessing', 'keras.preprocessing')
assert name[:6] == 'keras.', 'Invalid module name: %s' % name
return name
def class_to_docs_link(cls):
module_name = clean_module_name(cls.__module__)
module_name = module_name[6:]
link = ROOT + module_name.replace('.', '/') + '#' + cls.__name__.lower()
return link
def class_to_source_link(cls):
module_name = clean_module_name(cls.__module__)
path = module_name.replace('.', '/')
path += '.py'
line = inspect.getsourcelines(cls)[-1]
link = ('https://github.com/keras-team/'
'keras/blob/master/' + path + '#L' + str(line))
return '[[source]](' + link + ')'
def code_snippet(snippet):
result = '```python\n'
result += snippet + '\n'
result += '```\n'
return result
def count_leading_spaces(s):
ws = re.search(r'\S', s)
if ws:
return ws.start()
else:
return 0
def process_list_block(docstring, starting_point, leading_spaces, marker):
ending_point = docstring.find('\n\n', starting_point)
block = docstring[starting_point:(None if ending_point == -1 else
ending_point - 1)]
# Place marker for later reinjection.
docstring = docstring.replace(block, marker)
lines = block.split('\n')
# Remove the computed number of leading white spaces from each line.
lines = [re.sub('^' + ' ' * leading_spaces, '', line) for line in lines]
# Usually lines have at least 4 additional leading spaces.
# These have to be removed, but first the list roots have to be detected.
top_level_regex = r'^ ([^\s\\\(]+):(.*)'
top_level_replacement = r'- __\1__:\2'
lines = [re.sub(top_level_regex, top_level_replacement, line) for line in lines]
# All the other lines get simply the 4 leading space (if present) removed
lines = [re.sub(r'^ ', '', line) for line in lines]
# Fix text lines after lists
indent = 0
text_block = False
for i in range(len(lines)):
line = lines[i]
spaces = re.search(r'\S', line)
if spaces:
# If it is a list element
if line[spaces.start()] == '-':
indent = spaces.start() + 1
if text_block:
text_block = False
lines[i] = '\n' + line
elif spaces.start() < indent:
text_block = True
indent = spaces.start()
lines[i] = '\n' + line
else:
text_block = False
indent = 0
block = '\n'.join(lines)
return docstring, block
def process_docstring(docstring):
# First, extract code blocks and process them.
code_blocks = []
if '```' in docstring:
tmp = docstring[:]
while '```' in tmp:
tmp = tmp[tmp.find('```'):]
index = tmp[3:].find('```') + 6
snippet = tmp[:index]
# Place marker in docstring for later reinjection.
docstring = docstring.replace(
snippet, '$CODE_BLOCK_%d' % len(code_blocks))
snippet_lines = snippet.split('\n')
# Remove leading spaces.
num_leading_spaces = snippet_lines[-1].find('`')
snippet_lines = ([snippet_lines[0]] +
[line[num_leading_spaces:]
for line in snippet_lines[1:]])
# Most code snippets have 3 or 4 more leading spaces
# on inner lines, but not all. Remove them.
inner_lines = snippet_lines[1:-1]
leading_spaces = None
for line in inner_lines:
if not line or line[0] == '\n':
continue
spaces = count_leading_spaces(line)
if leading_spaces is None:
leading_spaces = spaces
if spaces < leading_spaces:
leading_spaces = spaces
if leading_spaces:
snippet_lines = ([snippet_lines[0]] +
[line[leading_spaces:]
for line in snippet_lines[1:-1]] +
[snippet_lines[-1]])
snippet = '\n'.join(snippet_lines)
code_blocks.append(snippet)
tmp = tmp[index:]
# Format docstring lists.
section_regex = r'\n( +)# (.*)\n'
section_idx = re.search(section_regex, docstring)
shift = 0
sections = {}
while section_idx and section_idx.group(2):
anchor = section_idx.group(2)
leading_spaces = len(section_idx.group(1))
shift += section_idx.end()
marker = '$' + anchor.replace(' ', '_') + '$'
docstring, content = process_list_block(docstring,
shift,
leading_spaces,
marker)
sections[marker] = content
section_idx = re.search(section_regex, docstring[shift:])
# Format docstring section titles.
docstring = re.sub(r'\n(\s+)# (.*)\n',
r'\n\1__\2__\n\n',
docstring)
# Strip all remaining leading spaces.
lines = docstring.split('\n')
docstring = '\n'.join([line.lstrip(' ') for line in lines])
# Reinject list blocks.
for marker, content in sections.items():
docstring = docstring.replace(marker, content)
# Reinject code blocks.
for i, code_block in enumerate(code_blocks):
docstring = docstring.replace(
'$CODE_BLOCK_%d' % i, code_block)
return docstring
print('Cleaning up existing sources directory.')
if os.path.exists('sources'):
shutil.rmtree('sources')
print('Populating sources directory with templates.')
for subdir, dirs, fnames in os.walk('templates'):
for fname in fnames:
new_subdir = subdir.replace('templates', 'sources')
if not os.path.exists(new_subdir):
os.makedirs(new_subdir)
if fname[-3:] == '.md':
fpath = os.path.join(subdir, fname)
new_fpath = fpath.replace('templates', 'sources')
shutil.copy(fpath, new_fpath)
def read_file(path):
with open(path) as f:
return f.read()
def collect_class_methods(cls, methods):
if isinstance(methods, (list, tuple)):
return [getattr(cls, m) if isinstance(m, str) else m for m in methods]
methods = []
for _, method in inspect.getmembers(cls, predicate=inspect.isroutine):
if method.__name__[0] == '_' or method.__name__ in EXCLUDE:
continue
methods.append(method)
return methods
def render_function(function, method=True):
subblocks = []
signature = get_function_signature(function, method=method)
if method:
signature = signature.replace(
clean_module_name(function.__module__) + '.', '')
subblocks.append('### ' + function.__name__ + '\n')
subblocks.append(code_snippet(signature))
docstring = function.__doc__
if docstring:
subblocks.append(process_docstring(docstring))
return '\n\n'.join(subblocks)
def read_page_data(page_data, type):
assert type in ['classes', 'functions', 'methods']
data = page_data.get(type, [])
for module in page_data.get('all_module_{}'.format(type), []):
module_data = []
for name in dir(module):
if name[0] == '_' or name in EXCLUDE:
continue
module_member = getattr(module, name)
if (inspect.isclass(module_member) and type == 'classes' or
inspect.isfunction(module_member) and type == 'functions'):
instance = module_member
if module.__name__ in instance.__module__:
if instance not in module_data:
module_data.append(instance)
module_data.sort(key=lambda x: id(x))
data += module_data
return data
if __name__ == '__main__':
readme = read_file('../README.md')
index = read_file('templates/index.md')
index = index.replace('{{autogenerated}}', readme[readme.find('##'):])
with open('sources/index.md', 'w') as f:
f.write(index)
print('Generating docs for Keras %s.' % keras.__version__)
for page_data in PAGES:
classes = read_page_data(page_data, 'classes')
blocks = []
for element in classes:
if not isinstance(element, (list, tuple)):
element = (element, [])
cls = element[0]
subblocks = []
signature = get_class_signature(cls)
subblocks.append('<span style="float:right;">' +
class_to_source_link(cls) + '</span>')
if element[1]:
subblocks.append('## ' + cls.__name__ + ' class\n')
else:
subblocks.append('### ' + cls.__name__ + '\n')
subblocks.append(code_snippet(signature))
docstring = cls.__doc__
if docstring:
subblocks.append(process_docstring(docstring))
methods = collect_class_methods(cls, element[1])
if methods:
subblocks.append('\n---')
subblocks.append('## ' + cls.__name__ + ' methods\n')
subblocks.append('\n---\n'.join(
[render_function(method, method=True) for method in methods]))
blocks.append('\n'.join(subblocks))
methods = read_page_data(page_data, 'methods')
for method in methods:
blocks.append(render_function(method, method=True))
functions = read_page_data(page_data, 'functions')
for function in functions:
blocks.append(render_function(function, method=False))
if not blocks:
raise RuntimeError('Found no content for page ' +
page_data['page'])
mkdown = '\n----\n\n'.join(blocks)
# save module page.
# Either insert content into existing page,
# or create page otherwise
page_name = page_data['page']
path = os.path.join('sources', page_name)
if os.path.exists(path):
template = read_file(path)
assert '{{autogenerated}}' in template, ('Template found for ' + path +
' but missing {{autogenerated}}'
' tag.')
mkdown = template.replace('{{autogenerated}}', mkdown)
print('...inserting autogenerated content into template:', path)
else:
print('...creating new page with autogenerated content:', path)
subdir = os.path.dirname(path)
if not os.path.exists(subdir):
os.makedirs(subdir)
with open(path, 'w') as f:
f.write(mkdown)
shutil.copyfile('../CONTRIBUTING.md', 'sources/contributing.md')
click to collapse/expand sidebar