# -*- coding: utf-8 -*-
"""Convolutional layers.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
..
import
backend
as
K
from
..
import
activations
from
..
import
initializers
from
..
import
regularizers
from
..
import
constraints
from
..engine.base_layer
import
Layer
from
..engine.base_layer
import
InputSpec
from
..utils
import
conv_utils
from
..legacy
import
interfaces
# imports for backwards namespace compatibility
from
.pooling
import
AveragePooling1D
from
.pooling
import
AveragePooling2D
from
.pooling
import
AveragePooling3D
from
.pooling
import
MaxPooling1D
from
.pooling
import
MaxPooling2D
from
.pooling
import
MaxPooling3D
from
..legacy.layers
import
AtrousConvolution1D
from
..legacy.layers
import
AtrousConvolution2D
class
_Conv
(
Layer
):
"""Abstract nD convolution layer (private, used as implementation base).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of outputs.
If `use_bias` is True, a bias vector is created and added to the outputs.
Finally, if `activation` is not `None`,
it is applied to the outputs as well.
# Arguments
rank: An integer, the rank of the convolution,
e.g. "2" for 2D convolution.
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of n integers, specifying the
dimensions of the convolution window.
strides: An integer or tuple/list of n integers,
specifying the strides of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: One of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, ..., channels)` while `"channels_first"` corresponds to
inputs with shape `(batch, channels, ...)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: An integer or tuple/list of n integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any `strides` value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
"""
def
__init__
(
self
,
rank
,
filters
,
kernel_size
,
strides
=
1
,
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
1
,
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
_Conv
,
self
)
.
__init__
(
**
kwargs
)
self
.
rank
=
rank
self
.
filters
=
filters
self
.
kernel_size
=
conv_utils
.
normalize_tuple
(
kernel_size
,
rank
,
'kernel_size'
)
self
.
strides
=
conv_utils
.
normalize_tuple
(
strides
,
rank
,
'strides'
)
self
.
padding
=
conv_utils
.
normalize_padding
(
padding
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
self
.
dilation_rate
=
conv_utils
.
normalize_tuple
(
dilation_rate
,
rank
,
'dilation_rate'
)
self
.
activation
=
activations
.
get
(
activation
)
self
.
use_bias
=
use_bias
self
.
kernel_initializer
=
initializers
.
get
(
kernel_initializer
)
self
.
bias_initializer
=
initializers
.
get
(
bias_initializer
)
self
.
kernel_regularizer
=
regularizers
.
get
(
kernel_regularizer
)
self
.
bias_regularizer
=
regularizers
.
get
(
bias_regularizer
)
self
.
activity_regularizer
=
regularizers
.
get
(
activity_regularizer
)
self
.
kernel_constraint
=
constraints
.
get
(
kernel_constraint
)
self
.
bias_constraint
=
constraints
.
get
(
bias_constraint
)
self
.
input_spec
=
InputSpec
(
ndim
=
self
.
rank
+
2
)
def
build
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
channel_axis
=
1
else
:
channel_axis
=
-
1
if
input_shape
[
channel_axis
]
is
None
:
raise
ValueError
(
'The channel dimension of the inputs '
'should be defined. Found `None`.'
)
input_dim
=
input_shape
[
channel_axis
]
kernel_shape
=
self
.
kernel_size
+
(
input_dim
,
self
.
filters
)
self
.
kernel
=
self
.
add_weight
(
shape
=
kernel_shape
,
initializer
=
self
.
kernel_initializer
,
name
=
'kernel'
,
regularizer
=
self
.
kernel_regularizer
,
constraint
=
self
.
kernel_constraint
)
if
self
.
use_bias
:
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
filters
,),
initializer
=
self
.
bias_initializer
,
name
=
'bias'
,
regularizer
=
self
.
bias_regularizer
,
constraint
=
self
.
bias_constraint
)
else
:
self
.
bias
=
None
# Set input spec.
self
.
input_spec
=
InputSpec
(
ndim
=
self
.
rank
+
2
,
axes
=
{
channel_axis
:
input_dim
})
self
.
built
=
True
def
call
(
self
,
inputs
):
if
self
.
rank
==
1
:
outputs
=
K
.
conv1d
(
inputs
,
self
.
kernel
,
strides
=
self
.
strides
[
0
],
padding
=
self
.
padding
,
data_format
=
self
.
data_format
,
dilation_rate
=
self
.
dilation_rate
[
0
])
if
self
.
rank
==
2
:
outputs
=
K
.
conv2d
(
inputs
,
self
.
kernel
,
strides
=
self
.
strides
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
,
dilation_rate
=
self
.
dilation_rate
)
if
self
.
rank
==
3
:
outputs
=
K
.
conv3d
(
inputs
,
self
.
kernel
,
strides
=
self
.
strides
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
,
dilation_rate
=
self
.
dilation_rate
)
if
self
.
use_bias
:
outputs
=
K
.
bias_add
(
outputs
,
self
.
bias
,
data_format
=
self
.
data_format
)
if
self
.
activation
is
not
None
:
return
self
.
activation
(
outputs
)
return
outputs
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_last'
:
space
=
input_shape
[
1
:
-
1
]
new_space
=
[]
for
i
in
range
(
len
(
space
)):
new_dim
=
conv_utils
.
conv_output_length
(
space
[
i
],
self
.
kernel_size
[
i
],
padding
=
self
.
padding
,
stride
=
self
.
strides
[
i
],
dilation
=
self
.
dilation_rate
[
i
])
new_space
.
append
(
new_dim
)
return
(
input_shape
[
0
],)
+
tuple
(
new_space
)
+
(
self
.
filters
,)
if
self
.
data_format
==
'channels_first'
:
space
=
input_shape
[
2
:]
new_space
=
[]
for
i
in
range
(
len
(
space
)):
new_dim
=
conv_utils
.
conv_output_length
(
space
[
i
],
self
.
kernel_size
[
i
],
padding
=
self
.
padding
,
stride
=
self
.
strides
[
i
],
dilation
=
self
.
dilation_rate
[
i
])
new_space
.
append
(
new_dim
)
return
(
input_shape
[
0
],
self
.
filters
)
+
tuple
(
new_space
)
def
get_config
(
self
):
config
=
{
'rank'
:
self
.
rank
,
'filters'
:
self
.
filters
,
'kernel_size'
:
self
.
kernel_size
,
'strides'
:
self
.
strides
,
'padding'
:
self
.
padding
,
'data_format'
:
self
.
data_format
,
'dilation_rate'
:
self
.
dilation_rate
,
'activation'
:
activations
.
serialize
(
self
.
activation
),
'use_bias'
:
self
.
use_bias
,
'kernel_initializer'
:
initializers
.
serialize
(
self
.
kernel_initializer
),
'bias_initializer'
:
initializers
.
serialize
(
self
.
bias_initializer
),
'kernel_regularizer'
:
regularizers
.
serialize
(
self
.
kernel_regularizer
),
'bias_regularizer'
:
regularizers
.
serialize
(
self
.
bias_regularizer
),
'activity_regularizer'
:
regularizers
.
serialize
(
self
.
activity_regularizer
),
'kernel_constraint'
:
constraints
.
serialize
(
self
.
kernel_constraint
),
'bias_constraint'
:
constraints
.
serialize
(
self
.
bias_constraint
)
}
base_config
=
super
(
_Conv
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
Conv1D
(
_Conv
):
"""1D convolution layer (e.g. temporal convolution).
This layer creates a convolution kernel that is convolved
with the layer input over a single spatial (or temporal) dimension
to produce a tensor of outputs.
If `use_bias` is True, a bias vector is created and added to the outputs.
Finally, if `activation` is not `None`,
it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide an `input_shape` argument
(tuple of integers or `None`, e.g.
`(10, 128)` for sequences of 10 vectors of 128-dimensional vectors,
or `(None, 128)` for variable-length sequences of 128-dimensional vectors.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of a single integer,
specifying the length of the 1D convolution window.
strides: An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: One of `"valid"`, `"causal"` or `"same"` (case-insensitive).
`"valid"` means "no padding".
`"same"` results in padding the input such that
the output has the same length as the original input.
`"causal"` results in causal (dilated) convolutions, e.g. output[t]
does not depend on input[t+1:]. Useful when modeling temporal data
where the model should not violate the temporal order.
See [WaveNet: A Generative Model for Raw Audio, section 2.1](https://arxiv.org/abs/1609.03499).
data_format: A string,
one of `"channels_last"` (default) or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, steps, channels)`
(default format for temporal data in Keras)
while `"channels_first"` corresponds to inputs
with shape `(batch, channels, steps)`.
dilation_rate: an integer or tuple/list of a single integer, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any `strides` value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
3D tensor with shape: `(batch, steps, channels)`
# Output shape
3D tensor with shape: `(batch, new_steps, filters)`
`steps` value might have changed due to padding or strides.
"""
@interfaces.legacy_conv1d_support
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
1
,
padding
=
'valid'
,
data_format
=
'channels_last'
,
dilation_rate
=
1
,
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
if
padding
==
'causal'
:
if
data_format
!=
'channels_last'
:
raise
ValueError
(
'When using causal padding in `Conv1D`, '
'`data_format` must be "channels_last" '
'(temporal data).'
)
super
(
Conv1D
,
self
)
.
__init__
(
rank
=
1
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
activation
=
activation
,
use_bias
=
use_bias
,
kernel_initializer
=
kernel_initializer
,
bias_initializer
=
bias_initializer
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
kernel_constraint
=
kernel_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
def
get_config
(
self
):
config
=
super
(
Conv1D
,
self
)
.
get_config
()
config
.
pop
(
'rank'
)
return
config
class
Conv2D
(
_Conv
):
"""2D convolution layer (e.g. spatial convolution over images).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If `use_bias` is True,
a bias vector is created and added to the outputs. Finally, if
`activation` is not `None`, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument `input_shape`
(tuple of integers, does not include the sample axis),
e.g. `input_shape=(128, 128, 3)` for 128x128 RGB pictures
in `data_format="channels_last"`.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
Note that `"same"` is slightly inconsistent across backends with
`strides` != 1, as described
[here](https://github.com/keras-team/keras/pull/9473#issuecomment-372166860)
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any stride value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`rows` and `cols` values might have changed due to padding.
"""
@interfaces.legacy_conv2d_support
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
(
1
,
1
),
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
(
1
,
1
),
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
Conv2D
,
self
)
.
__init__
(
rank
=
2
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
activation
=
activation
,
use_bias
=
use_bias
,
kernel_initializer
=
kernel_initializer
,
bias_initializer
=
bias_initializer
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
kernel_constraint
=
kernel_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
def
get_config
(
self
):
config
=
super
(
Conv2D
,
self
)
.
get_config
()
config
.
pop
(
'rank'
)
return
config
class
Conv3D
(
_Conv
):
"""3D convolution layer (e.g. spatial convolution over volumes).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If `use_bias` is True,
a bias vector is created and added to the outputs. Finally, if
`activation` is not `None`, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument `input_shape`
(tuple of integers, does not include the sample axis),
e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes
with a single channel,
in `data_format="channels_last"`.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 3 integers, specifying the
depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the convolution along each spatial dimension.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `"channels_first"` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: an integer or tuple/list of 3 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any stride value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
5D tensor with shape:
`(batch, channels, conv_dim1, conv_dim2, conv_dim3)`
if `data_format` is `"channels_first"`
or 5D tensor with shape:
`(batch, conv_dim1, conv_dim2, conv_dim3, channels)`
if `data_format` is `"channels_last"`.
# Output shape
5D tensor with shape:
`(batch, filters, new_conv_dim1, new_conv_dim2, new_conv_dim3)`
if `data_format` is `"channels_first"`
or 5D tensor with shape:
`(batch, new_conv_dim1, new_conv_dim2, new_conv_dim3, filters)`
if `data_format` is `"channels_last"`.
`new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have changed due to padding.
"""
@interfaces.legacy_conv3d_support
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
(
1
,
1
,
1
),
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
(
1
,
1
,
1
),
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
Conv3D
,
self
)
.
__init__
(
rank
=
3
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
activation
=
activation
,
use_bias
=
use_bias
,
kernel_initializer
=
kernel_initializer
,
bias_initializer
=
bias_initializer
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
kernel_constraint
=
kernel_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
def
get_config
(
self
):
config
=
super
(
Conv3D
,
self
)
.
get_config
()
config
.
pop
(
'rank'
)
return
config
class
Conv2DTranspose
(
Conv2D
):
"""Transposed convolution layer (sometimes called Deconvolution).
The need for transposed convolutions generally arises
from the desire to use a transformation going in the opposite direction
of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input
while maintaining a connectivity pattern that is compatible with
said convolution.
When using this layer as the first layer in a model,
provide the keyword argument `input_shape`
(tuple of integers, does not include the sample axis),
e.g. `input_shape=(128, 128, 3)` for 128x128 RGB pictures
in `data_format="channels_last"`.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
output_padding: An integer or tuple/list of 2 integers,
specifying the amount of padding along the height and width
of the output tensor.
Can be a single integer to specify the same value for all
spatial dimensions.
The amount of output padding along a given dimension must be
lower than the stride along that same dimension.
If set to `None` (default), the output shape is inferred.
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any stride value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`rows` and `cols` values might have changed due to padding.
If `output_padding` is specified:
```
new_rows = (rows - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + output_padding[0]
new_cols = (cols - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + output_padding[1]
```
# References
- [A guide to convolution arithmetic for deep learning](https://arxiv.org/abs/1603.07285v1)
- [Deconvolutional Networks](http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf)
"""
@interfaces.legacy_deconv2d_support
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
(
1
,
1
),
padding
=
'valid'
,
output_padding
=
None
,
data_format
=
None
,
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
Conv2DTranspose
,
self
)
.
__init__
(
filters
,
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
activation
=
activation
,
use_bias
=
use_bias
,
kernel_initializer
=
kernel_initializer
,
bias_initializer
=
bias_initializer
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
kernel_constraint
=
kernel_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
self
.
output_padding
=
output_padding
if
self
.
output_padding
is
not
None
:
self
.
output_padding
=
conv_utils
.
normalize_tuple
(
self
.
output_padding
,
2
,
'output_padding'
)
for
stride
,
out_pad
in
zip
(
self
.
strides
,
self
.
output_padding
):
if
out_pad
>=
stride
:
raise
ValueError
(
'Stride '
+
str
(
self
.
strides
)
+
' must be '
'greater than output padding '
+
str
(
self
.
output_padding
))
def
build
(
self
,
input_shape
):
if
len
(
input_shape
)
!=
4
:
raise
ValueError
(
'Inputs should have rank '
+
str
(
4
)
+
'; Received input shape:'
,
str
(
input_shape
))
if
self
.
data_format
==
'channels_first'
:
channel_axis
=
1
else
:
channel_axis
=
-
1
if
input_shape
[
channel_axis
]
is
None
:
raise
ValueError
(
'The channel dimension of the inputs '
'should be defined. Found `None`.'
)
input_dim
=
input_shape
[
channel_axis
]
kernel_shape
=
self
.
kernel_size
+
(
self
.
filters
,
input_dim
)
self
.
kernel
=
self
.
add_weight
(
shape
=
kernel_shape
,
initializer
=
self
.
kernel_initializer
,
name
=
'kernel'
,
regularizer
=
self
.
kernel_regularizer
,
constraint
=
self
.
kernel_constraint
)
if
self
.
use_bias
:
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
filters
,),
initializer
=
self
.
bias_initializer
,
name
=
'bias'
,
regularizer
=
self
.
bias_regularizer
,
constraint
=
self
.
bias_constraint
)
else
:
self
.
bias
=
None
# Set input spec.
self
.
input_spec
=
InputSpec
(
ndim
=
4
,
axes
=
{
channel_axis
:
input_dim
})
self
.
built
=
True
def
call
(
self
,
inputs
):
input_shape
=
K
.
shape
(
inputs
)
batch_size
=
input_shape
[
0
]
if
self
.
data_format
==
'channels_first'
:
h_axis
,
w_axis
=
2
,
3
else
:
h_axis
,
w_axis
=
1
,
2
height
,
width
=
input_shape
[
h_axis
],
input_shape
[
w_axis
]
kernel_h
,
kernel_w
=
self
.
kernel_size
stride_h
,
stride_w
=
self
.
strides
if
self
.
output_padding
is
None
:
out_pad_h
=
out_pad_w
=
None
else
:
out_pad_h
,
out_pad_w
=
self
.
output_padding
# Infer the dynamic output shape:
out_height
=
conv_utils
.
deconv_length
(
height
,
stride_h
,
kernel_h
,
self
.
padding
,
out_pad_h
)
out_width
=
conv_utils
.
deconv_length
(
width
,
stride_w
,
kernel_w
,
self
.
padding
,
out_pad_w
)
if
self
.
data_format
==
'channels_first'
:
output_shape
=
(
batch_size
,
self
.
filters
,
out_height
,
out_width
)
else
:
output_shape
=
(
batch_size
,
out_height
,
out_width
,
self
.
filters
)
outputs
=
K
.
conv2d_transpose
(
inputs
,
self
.
kernel
,
output_shape
,
self
.
strides
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
)
if
self
.
use_bias
:
outputs
=
K
.
bias_add
(
outputs
,
self
.
bias
,
data_format
=
self
.
data_format
)
if
self
.
activation
is
not
None
:
return
self
.
activation
(
outputs
)
return
outputs
def
compute_output_shape
(
self
,
input_shape
):
output_shape
=
list
(
input_shape
)
if
self
.
data_format
==
'channels_first'
:
c_axis
,
h_axis
,
w_axis
=
1
,
2
,
3
else
:
c_axis
,
h_axis
,
w_axis
=
3
,
1
,
2
kernel_h
,
kernel_w
=
self
.
kernel_size
stride_h
,
stride_w
=
self
.
strides
if
self
.
output_padding
is
None
:
out_pad_h
=
out_pad_w
=
None
else
:
out_pad_h
,
out_pad_w
=
self
.
output_padding
output_shape
[
c_axis
]
=
self
.
filters
output_shape
[
h_axis
]
=
conv_utils
.
deconv_length
(
output_shape
[
h_axis
],
stride_h
,
kernel_h
,
self
.
padding
,
out_pad_h
)
output_shape
[
w_axis
]
=
conv_utils
.
deconv_length
(
output_shape
[
w_axis
],
stride_w
,
kernel_w
,
self
.
padding
,
out_pad_w
)
return
tuple
(
output_shape
)
def
get_config
(
self
):
config
=
super
(
Conv2DTranspose
,
self
)
.
get_config
()
config
.
pop
(
'dilation_rate'
)
config
[
'output_padding'
]
=
self
.
output_padding
return
config
class
Conv3DTranspose
(
Conv3D
):
"""Transposed convolution layer (sometimes called Deconvolution).
The need for transposed convolutions generally arises
from the desire to use a transformation going in the opposite direction
of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input
while maintaining a connectivity pattern that is compatible with
said convolution.
When using this layer as the first layer in a model,
provide the keyword argument `input_shape`
(tuple of integers, does not include the sample axis),
e.g. `input_shape=(128, 128, 128, 3)` for a 128x128x128 volume with 3 channels
if `data_format="channels_last"`.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 3 integers, specifying the
depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the convolution
along the depth, height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
output_padding: An integer or tuple/list of 3 integers,
specifying the amount of padding along the depth, height, and
width.
Can be a single integer to specify the same value for all
spatial dimensions.
The amount of output padding along a given dimension must be
lower than the stride along that same dimension.
If set to `None` (default), the output shape is inferred.
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, depth, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, depth, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: an integer or tuple/list of 3 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any stride value != 1.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
5D tensor with shape:
`(batch, channels, depth, rows, cols)`
if `data_format` is `"channels_first"`
or 5D tensor with shape:
`(batch, depth, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
5D tensor with shape:
`(batch, filters, new_depth, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 5D tensor with shape:
`(batch, new_depth, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`depth` and `rows` and `cols` values might have changed due to padding.
If `output_padding` is specified::
```
new_depth = (depth - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + output_padding[0]
new_rows = (rows - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + output_padding[1]
new_cols = (cols - 1) * strides[2] + kernel_size[2] - 2 * padding[2] + output_padding[2]
```
# References
- [A guide to convolution arithmetic for deep learning](https://arxiv.org/abs/1603.07285v1)
- [Deconvolutional Networks](http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf)
"""
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
(
1
,
1
,
1
),
padding
=
'valid'
,
output_padding
=
None
,
data_format
=
None
,
activation
=
None
,
use_bias
=
True
,
kernel_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
Conv3DTranspose
,
self
)
.
__init__
(
filters
,
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
activation
=
activation
,
use_bias
=
use_bias
,
kernel_initializer
=
kernel_initializer
,
bias_initializer
=
bias_initializer
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
kernel_constraint
=
kernel_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
self
.
output_padding
=
output_padding
if
self
.
output_padding
is
not
None
:
self
.
output_padding
=
conv_utils
.
normalize_tuple
(
self
.
output_padding
,
3
,
'output_padding'
)
for
stride
,
out_pad
in
zip
(
self
.
strides
,
self
.
output_padding
):
if
out_pad
>=
stride
:
raise
ValueError
(
'Stride '
+
str
(
self
.
strides
)
+
' must be '
'greater than output padding '
+
str
(
self
.
output_padding
))
def
build
(
self
,
input_shape
):
if
len
(
input_shape
)
!=
5
:
raise
ValueError
(
'Inputs should have rank '
+
str
(
5
)
+
'; Received input shape:'
,
str
(
input_shape
))
if
self
.
data_format
==
'channels_first'
:
channel_axis
=
1
else
:
channel_axis
=
-
1
if
input_shape
[
channel_axis
]
is
None
:
raise
ValueError
(
'The channel dimension of the inputs '
'should be defined. Found `None`.'
)
input_dim
=
input_shape
[
channel_axis
]
kernel_shape
=
self
.
kernel_size
+
(
self
.
filters
,
input_dim
)
self
.
kernel
=
self
.
add_weight
(
shape
=
kernel_shape
,
initializer
=
self
.
kernel_initializer
,
name
=
'kernel'
,
regularizer
=
self
.
kernel_regularizer
,
constraint
=
self
.
kernel_constraint
)
if
self
.
use_bias
:
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
filters
,),
initializer
=
self
.
bias_initializer
,
name
=
'bias'
,
regularizer
=
self
.
bias_regularizer
,
constraint
=
self
.
bias_constraint
)
else
:
self
.
bias
=
None
# Set input spec.
self
.
input_spec
=
InputSpec
(
ndim
=
5
,
axes
=
{
channel_axis
:
input_dim
})
self
.
built
=
True
def
call
(
self
,
inputs
):
input_shape
=
K
.
shape
(
inputs
)
batch_size
=
input_shape
[
0
]
if
self
.
data_format
==
'channels_first'
:
d_axis
,
h_axis
,
w_axis
=
2
,
3
,
4
else
:
d_axis
,
h_axis
,
w_axis
=
1
,
2
,
3
depth
=
input_shape
[
d_axis
]
height
=
input_shape
[
h_axis
]
width
=
input_shape
[
w_axis
]
kernel_d
,
kernel_h
,
kernel_w
=
self
.
kernel_size
stride_d
,
stride_h
,
stride_w
=
self
.
strides
if
self
.
output_padding
is
None
:
out_pad_d
=
out_pad_h
=
out_pad_w
=
None
else
:
out_pad_d
,
out_pad_h
,
out_pad_w
=
self
.
output_padding
# Infer the dynamic output shape:
out_depth
=
conv_utils
.
deconv_length
(
depth
,
stride_d
,
kernel_d
,
self
.
padding
,
out_pad_d
)
out_height
=
conv_utils
.
deconv_length
(
height
,
stride_h
,
kernel_h
,
self
.
padding
,
out_pad_h
)
out_width
=
conv_utils
.
deconv_length
(
width
,
stride_w
,
kernel_w
,
self
.
padding
,
out_pad_w
)
if
self
.
data_format
==
'channels_first'
:
output_shape
=
(
batch_size
,
self
.
filters
,
out_depth
,
out_height
,
out_width
)
else
:
output_shape
=
(
batch_size
,
out_depth
,
out_height
,
out_width
,
self
.
filters
)
outputs
=
K
.
conv3d_transpose
(
inputs
,
self
.
kernel
,
output_shape
,
self
.
strides
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
)
if
self
.
use_bias
:
outputs
=
K
.
bias_add
(
outputs
,
self
.
bias
,
data_format
=
self
.
data_format
)
if
self
.
activation
is
not
None
:
return
self
.
activation
(
outputs
)
return
outputs
def
compute_output_shape
(
self
,
input_shape
):
output_shape
=
list
(
input_shape
)
if
self
.
data_format
==
'channels_first'
:
c_axis
,
d_axis
,
h_axis
,
w_axis
=
1
,
2
,
3
,
4
else
:
c_axis
,
d_axis
,
h_axis
,
w_axis
=
4
,
1
,
2
,
3
kernel_d
,
kernel_h
,
kernel_w
=
self
.
kernel_size
stride_d
,
stride_h
,
stride_w
=
self
.
strides
if
self
.
output_padding
is
None
:
out_pad_d
=
out_pad_h
=
out_pad_w
=
None
else
:
out_pad_d
,
out_pad_h
,
out_pad_w
=
self
.
output_padding
output_shape
[
c_axis
]
=
self
.
filters
output_shape
[
d_axis
]
=
conv_utils
.
deconv_length
(
output_shape
[
d_axis
],
stride_d
,
kernel_d
,
self
.
padding
,
out_pad_d
)
output_shape
[
h_axis
]
=
conv_utils
.
deconv_length
(
output_shape
[
h_axis
],
stride_h
,
kernel_h
,
self
.
padding
,
out_pad_h
)
output_shape
[
w_axis
]
=
conv_utils
.
deconv_length
(
output_shape
[
w_axis
],
stride_w
,
kernel_w
,
self
.
padding
,
out_pad_w
)
return
tuple
(
output_shape
)
def
get_config
(
self
):
config
=
super
(
Conv3DTranspose
,
self
)
.
get_config
()
config
.
pop
(
'dilation_rate'
)
config
[
'output_padding'
]
=
self
.
output_padding
return
config
class
_SeparableConv
(
_Conv
):
"""Abstract nD depthwise separable convolution layer (private).
Separable convolutions consist in first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes together the resulting
output channels. The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as
a way to factorize a convolution kernel into two smaller kernels,
or as an extreme version of an Inception block.
# Arguments
rank: An integer, the rank of the convolution,
e.g. "2" for 2D convolution.
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: an integer or tuple/list of n integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any stride value != 1.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: Initializer for the depthwise kernel matrix
(see [initializers](../initializers.md)).
pointwise_initializer: Initializer for the pointwise kernel matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix
(see [regularizer](../regularizers.md)).
pointwise_regularizer: Regularizer function applied to
the pointwise kernel matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see [constraints](../constraints.md)).
pointwise_constraint: Constraint function applied to
the pointwise kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`rows` and `cols` values might have changed due to padding.
"""
def
__init__
(
self
,
rank
,
filters
,
kernel_size
,
strides
=
1
,
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
1
,
depth_multiplier
=
1
,
activation
=
None
,
use_bias
=
True
,
depthwise_initializer
=
'glorot_uniform'
,
pointwise_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
depthwise_regularizer
=
None
,
pointwise_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
depthwise_constraint
=
None
,
pointwise_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
_SeparableConv
,
self
)
.
__init__
(
rank
=
rank
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
activation
=
activation
,
use_bias
=
use_bias
,
bias_initializer
=
bias_initializer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
self
.
depth_multiplier
=
depth_multiplier
self
.
depthwise_initializer
=
initializers
.
get
(
depthwise_initializer
)
self
.
pointwise_initializer
=
initializers
.
get
(
pointwise_initializer
)
self
.
depthwise_regularizer
=
regularizers
.
get
(
depthwise_regularizer
)
self
.
pointwise_regularizer
=
regularizers
.
get
(
pointwise_regularizer
)
self
.
depthwise_constraint
=
constraints
.
get
(
depthwise_constraint
)
self
.
pointwise_constraint
=
constraints
.
get
(
pointwise_constraint
)
def
build
(
self
,
input_shape
):
if
len
(
input_shape
)
<
self
.
rank
+
2
:
raise
ValueError
(
'Inputs to `SeparableConv'
+
str
(
self
.
rank
)
+
'D` '
'should have rank '
+
str
(
self
.
rank
+
2
)
+
'. '
'Received input shape:'
,
str
(
input_shape
))
channel_axis
=
1
if
self
.
data_format
==
'channels_first'
else
-
1
if
input_shape
[
channel_axis
]
is
None
:
raise
ValueError
(
'The channel dimension of the inputs '
'should be defined. Found `None`.'
)
input_dim
=
int
(
input_shape
[
channel_axis
])
depthwise_kernel_shape
=
self
.
kernel_size
+
(
input_dim
,
self
.
depth_multiplier
)
pointwise_kernel_shape
=
(
1
,)
*
self
.
rank
+
(
self
.
depth_multiplier
*
input_dim
,
self
.
filters
)
self
.
depthwise_kernel
=
self
.
add_weight
(
shape
=
depthwise_kernel_shape
,
initializer
=
self
.
depthwise_initializer
,
name
=
'depthwise_kernel'
,
regularizer
=
self
.
depthwise_regularizer
,
constraint
=
self
.
depthwise_constraint
)
self
.
pointwise_kernel
=
self
.
add_weight
(
shape
=
pointwise_kernel_shape
,
initializer
=
self
.
pointwise_initializer
,
name
=
'pointwise_kernel'
,
regularizer
=
self
.
pointwise_regularizer
,
constraint
=
self
.
pointwise_constraint
)
if
self
.
use_bias
:
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
filters
,),
initializer
=
self
.
bias_initializer
,
name
=
'bias'
,
regularizer
=
self
.
bias_regularizer
,
constraint
=
self
.
bias_constraint
)
else
:
self
.
bias
=
None
# Set input spec.
self
.
input_spec
=
InputSpec
(
ndim
=
self
.
rank
+
2
,
axes
=
{
channel_axis
:
input_dim
})
self
.
built
=
True
def
call
(
self
,
inputs
):
if
self
.
rank
==
1
:
outputs
=
K
.
separable_conv1d
(
inputs
,
self
.
depthwise_kernel
,
self
.
pointwise_kernel
,
data_format
=
self
.
data_format
,
strides
=
self
.
strides
,
padding
=
self
.
padding
,
dilation_rate
=
self
.
dilation_rate
)
if
self
.
rank
==
2
:
outputs
=
K
.
separable_conv2d
(
inputs
,
self
.
depthwise_kernel
,
self
.
pointwise_kernel
,
data_format
=
self
.
data_format
,
strides
=
self
.
strides
,
padding
=
self
.
padding
,
dilation_rate
=
self
.
dilation_rate
)
if
self
.
use_bias
:
outputs
=
K
.
bias_add
(
outputs
,
self
.
bias
,
data_format
=
self
.
data_format
)
if
self
.
activation
is
not
None
:
return
self
.
activation
(
outputs
)
return
outputs
def
get_config
(
self
):
config
=
super
(
_SeparableConv
,
self
)
.
get_config
()
config
.
pop
(
'rank'
)
config
.
pop
(
'kernel_initializer'
)
config
.
pop
(
'kernel_regularizer'
)
config
.
pop
(
'kernel_constraint'
)
config
[
'depth_multiplier'
]
=
self
.
depth_multiplier
config
[
'depthwise_initializer'
]
=
initializers
.
serialize
(
self
.
depthwise_initializer
)
config
[
'pointwise_initializer'
]
=
initializers
.
serialize
(
self
.
pointwise_initializer
)
config
[
'depthwise_regularizer'
]
=
regularizers
.
serialize
(
self
.
depthwise_regularizer
)
config
[
'pointwise_regularizer'
]
=
regularizers
.
serialize
(
self
.
pointwise_regularizer
)
config
[
'depthwise_constraint'
]
=
constraints
.
serialize
(
self
.
depthwise_constraint
)
config
[
'pointwise_constraint'
]
=
constraints
.
serialize
(
self
.
pointwise_constraint
)
return
config
class
SeparableConv1D
(
_SeparableConv
):
"""Depthwise separable 1D convolution.
Separable convolutions consist in first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes together the resulting
output channels. The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as
a way to factorize a convolution kernel into two smaller kernels,
or as an extreme version of an Inception block.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of single integer,
specifying the length of the 1D convolution window.
strides: An integer or tuple/list of single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, steps, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, steps)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: An integer or tuple/list of a single integer, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any `strides` value != 1.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: Initializer for the depthwise kernel matrix
(see [initializers](../initializers.md)).
pointwise_initializer: Initializer for the pointwise kernel matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix
(see [regularizer](../regularizers.md)).
pointwise_regularizer: Regularizer function applied to
the pointwise kernel matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see [constraints](../constraints.md)).
pointwise_constraint: Constraint function applied to
the pointwise kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
3D tensor with shape:
`(batch, channels, steps)`
if `data_format` is `"channels_first"`
or 3D tensor with shape:
`(batch, steps, channels)`
if `data_format` is `"channels_last"`.
# Output shape
3D tensor with shape:
`(batch, filters, new_steps)`
if `data_format` is `"channels_first"`
or 3D tensor with shape:
`(batch, new_steps, filters)`
if `data_format` is `"channels_last"`.
`new_steps` values might have changed due to padding or strides.
"""
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
1
,
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
1
,
depth_multiplier
=
1
,
activation
=
None
,
use_bias
=
True
,
depthwise_initializer
=
'glorot_uniform'
,
pointwise_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
depthwise_regularizer
=
None
,
pointwise_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
depthwise_constraint
=
None
,
pointwise_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
SeparableConv1D
,
self
)
.
__init__
(
rank
=
1
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
depth_multiplier
=
depth_multiplier
,
activation
=
activation
,
use_bias
=
use_bias
,
depthwise_initializer
=
depthwise_initializer
,
pointwise_initializer
=
pointwise_initializer
,
bias_initializer
=
bias_initializer
,
depthwise_regularizer
=
depthwise_regularizer
,
pointwise_regularizer
=
pointwise_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
depthwise_constraint
=
depthwise_constraint
,
pointwise_constraint
=
pointwise_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
class
SeparableConv2D
(
_SeparableConv
):
"""Depthwise separable 2D convolution.
Separable convolutions consist in first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes together the resulting
output channels. The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as
a way to factorize a convolution kernel into two smaller kernels,
or as an extreme version of an Inception block.
# Arguments
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any `strides` value != 1.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: Initializer for the depthwise kernel matrix
(see [initializers](../initializers.md)).
pointwise_initializer: Initializer for the pointwise kernel matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix
(see [regularizer](../regularizers.md)).
pointwise_regularizer: Regularizer function applied to
the pointwise kernel matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see [constraints](../constraints.md)).
pointwise_constraint: Constraint function applied to
the pointwise kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`rows` and `cols` values might have changed due to padding.
"""
@interfaces.legacy_separable_conv2d_support
def
__init__
(
self
,
filters
,
kernel_size
,
strides
=
(
1
,
1
),
padding
=
'valid'
,
data_format
=
None
,
dilation_rate
=
(
1
,
1
),
depth_multiplier
=
1
,
activation
=
None
,
use_bias
=
True
,
depthwise_initializer
=
'glorot_uniform'
,
pointwise_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
depthwise_regularizer
=
None
,
pointwise_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
depthwise_constraint
=
None
,
pointwise_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
SeparableConv2D
,
self
)
.
__init__
(
rank
=
2
,
filters
=
filters
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
dilation_rate
=
dilation_rate
,
depth_multiplier
=
depth_multiplier
,
activation
=
activation
,
use_bias
=
use_bias
,
depthwise_initializer
=
depthwise_initializer
,
pointwise_initializer
=
pointwise_initializer
,
bias_initializer
=
bias_initializer
,
depthwise_regularizer
=
depthwise_regularizer
,
pointwise_regularizer
=
pointwise_regularizer
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
depthwise_constraint
=
depthwise_constraint
,
pointwise_constraint
=
pointwise_constraint
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
class
DepthwiseConv2D
(
Conv2D
):
"""Depthwise separable 2D convolution.
Depthwise Separable convolutions consists in performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
# Arguments
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `'valid'` or `'same'` (case-insensitive).
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be 'channels_last'.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. 'linear' activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: Initializer for the depthwise kernel matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its 'activation').
(see [regularizer](../regularizers.md)).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, rows, cols, channels)`
if `data_format` is `"channels_last"`.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if `data_format` is `"channels_first"`
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if `data_format` is `"channels_last"`.
`rows` and `cols` values might have changed due to padding.
"""
def
__init__
(
self
,
kernel_size
,
strides
=
(
1
,
1
),
padding
=
'valid'
,
depth_multiplier
=
1
,
data_format
=
None
,
activation
=
None
,
use_bias
=
True
,
depthwise_initializer
=
'glorot_uniform'
,
bias_initializer
=
'zeros'
,
depthwise_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
depthwise_constraint
=
None
,
bias_constraint
=
None
,
**
kwargs
):
super
(
DepthwiseConv2D
,
self
)
.
__init__
(
filters
=
None
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_format
=
data_format
,
activation
=
activation
,
use_bias
=
use_bias
,
bias_regularizer
=
bias_regularizer
,
activity_regularizer
=
activity_regularizer
,
bias_constraint
=
bias_constraint
,
**
kwargs
)
self
.
depth_multiplier
=
depth_multiplier
self
.
depthwise_initializer
=
initializers
.
get
(
depthwise_initializer
)
self
.
depthwise_regularizer
=
regularizers
.
get
(
depthwise_regularizer
)
self
.
depthwise_constraint
=
constraints
.
get
(
depthwise_constraint
)
self
.
bias_initializer
=
initializers
.
get
(
bias_initializer
)
def
build
(
self
,
input_shape
):
if
len
(
input_shape
)
<
4
:
raise
ValueError
(
'Inputs to `DepthwiseConv2D` should have rank 4. '
'Received input shape:'
,
str
(
input_shape
))
if
self
.
data_format
==
'channels_first'
:
channel_axis
=
1
else
:
channel_axis
=
3
if
input_shape
[
channel_axis
]
is
None
:
raise
ValueError
(
'The channel dimension of the inputs to '
'`DepthwiseConv2D` '
'should be defined. Found `None`.'
)
input_dim
=
int
(
input_shape
[
channel_axis
])
depthwise_kernel_shape
=
(
self
.
kernel_size
[
0
],
self
.
kernel_size
[
1
],
input_dim
,
self
.
depth_multiplier
)
self
.
depthwise_kernel
=
self
.
add_weight
(
shape
=
depthwise_kernel_shape
,
initializer
=
self
.
depthwise_initializer
,
name
=
'depthwise_kernel'
,
regularizer
=
self
.
depthwise_regularizer
,
constraint
=
self
.
depthwise_constraint
)
if
self
.
use_bias
:
self
.
bias
=
self
.
add_weight
(
shape
=
(
input_dim
*
self
.
depth_multiplier
,),
initializer
=
self
.
bias_initializer
,
name
=
'bias'
,
regularizer
=
self
.
bias_regularizer
,
constraint
=
self
.
bias_constraint
)
else
:
self
.
bias
=
None
# Set input spec.
self
.
input_spec
=
InputSpec
(
ndim
=
4
,
axes
=
{
channel_axis
:
input_dim
})
self
.
built
=
True
def
call
(
self
,
inputs
,
training
=
None
):
outputs
=
K
.
depthwise_conv2d
(
inputs
,
self
.
depthwise_kernel
,
strides
=
self
.
strides
,
padding
=
self
.
padding
,
dilation_rate
=
self
.
dilation_rate
,
data_format
=
self
.
data_format
)
if
self
.
use_bias
:
outputs
=
K
.
bias_add
(
outputs
,
self
.
bias
,
data_format
=
self
.
data_format
)
if
self
.
activation
is
not
None
:
return
self
.
activation
(
outputs
)
return
outputs
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
rows
=
input_shape
[
2
]
cols
=
input_shape
[
3
]
out_filters
=
input_shape
[
1
]
*
self
.
depth_multiplier
elif
self
.
data_format
==
'channels_last'
:
rows
=
input_shape
[
1
]
cols
=
input_shape
[
2
]
out_filters
=
input_shape
[
3
]
*
self
.
depth_multiplier
rows
=
conv_utils
.
conv_output_length
(
rows
,
self
.
kernel_size
[
0
],
self
.
padding
,
self
.
strides
[
0
])
cols
=
conv_utils
.
conv_output_length
(
cols
,
self
.
kernel_size
[
1
],
self
.
padding
,
self
.
strides
[
1
])
if
self
.
data_format
==
'channels_first'
:
return
(
input_shape
[
0
],
out_filters
,
rows
,
cols
)
elif
self
.
data_format
==
'channels_last'
:
return
(
input_shape
[
0
],
rows
,
cols
,
out_filters
)
def
get_config
(
self
):
config
=
super
(
DepthwiseConv2D
,
self
)
.
get_config
()
config
.
pop
(
'filters'
)
config
.
pop
(
'kernel_initializer'
)
config
.
pop
(
'kernel_regularizer'
)
config
.
pop
(
'kernel_constraint'
)
config
[
'depth_multiplier'
]
=
self
.
depth_multiplier
config
[
'depthwise_initializer'
]
=
initializers
.
serialize
(
self
.
depthwise_initializer
)
config
[
'depthwise_regularizer'
]
=
regularizers
.
serialize
(
self
.
depthwise_regularizer
)
config
[
'depthwise_constraint'
]
=
constraints
.
serialize
(
self
.
depthwise_constraint
)
return
config
class
UpSampling1D
(
Layer
):
"""Upsampling layer for 1D inputs.
Repeats each temporal step `size` times along the time axis.
# Arguments
size: integer. Upsampling factor.
# Input shape
3D tensor with shape: `(batch, steps, features)`.
# Output shape
3D tensor with shape: `(batch, upsampled_steps, features)`.
"""
@interfaces.legacy_upsampling1d_support
def
__init__
(
self
,
size
=
2
,
**
kwargs
):
super
(
UpSampling1D
,
self
)
.
__init__
(
**
kwargs
)
self
.
size
=
int
(
size
)
self
.
input_spec
=
InputSpec
(
ndim
=
3
)
def
compute_output_shape
(
self
,
input_shape
):
size
=
self
.
size
*
input_shape
[
1
]
if
input_shape
[
1
]
is
not
None
else
None
return
(
input_shape
[
0
],
size
,
input_shape
[
2
])
def
call
(
self
,
inputs
):
output
=
K
.
repeat_elements
(
inputs
,
self
.
size
,
axis
=
1
)
return
output
def
get_config
(
self
):
config
=
{
'size'
:
self
.
size
}
base_config
=
super
(
UpSampling1D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
UpSampling2D
(
Layer
):
"""Upsampling layer for 2D inputs.
Repeats the rows and columns of the data
by size[0] and size[1] respectively.
# Arguments
size: int, or tuple of 2 integers.
The upsampling factors for rows and columns.
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, upsampled_rows, upsampled_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, upsampled_rows, upsampled_cols)`
"""
@interfaces.legacy_upsampling2d_support
def
__init__
(
self
,
size
=
(
2
,
2
),
data_format
=
None
,
**
kwargs
):
super
(
UpSampling2D
,
self
)
.
__init__
(
**
kwargs
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
self
.
size
=
conv_utils
.
normalize_tuple
(
size
,
2
,
'size'
)
self
.
input_spec
=
InputSpec
(
ndim
=
4
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
height
=
self
.
size
[
0
]
*
input_shape
[
2
]
if
input_shape
[
2
]
is
not
None
else
None
width
=
self
.
size
[
1
]
*
input_shape
[
3
]
if
input_shape
[
3
]
is
not
None
else
None
return
(
input_shape
[
0
],
input_shape
[
1
],
height
,
width
)
elif
self
.
data_format
==
'channels_last'
:
height
=
self
.
size
[
0
]
*
input_shape
[
1
]
if
input_shape
[
1
]
is
not
None
else
None
width
=
self
.
size
[
1
]
*
input_shape
[
2
]
if
input_shape
[
2
]
is
not
None
else
None
return
(
input_shape
[
0
],
height
,
width
,
input_shape
[
3
])
def
call
(
self
,
inputs
):
return
K
.
resize_images
(
inputs
,
self
.
size
[
0
],
self
.
size
[
1
],
self
.
data_format
)
def
get_config
(
self
):
config
=
{
'size'
:
self
.
size
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
UpSampling2D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
UpSampling3D
(
Layer
):
"""Upsampling layer for 3D inputs.
Repeats the 1st, 2nd and 3rd dimensions
of the data by size[0], size[1] and size[2] respectively.
# Arguments
size: int, or tuple of 3 integers.
The upsampling factors for dim1, dim2 and dim3.
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `"channels_first"` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, dim1, dim2, dim3, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, dim1, dim2, dim3)`
# Output shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, upsampled_dim1, upsampled_dim2, upsampled_dim3, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, upsampled_dim1, upsampled_dim2, upsampled_dim3)`
"""
@interfaces.legacy_upsampling3d_support
def
__init__
(
self
,
size
=
(
2
,
2
,
2
),
data_format
=
None
,
**
kwargs
):
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
self
.
size
=
conv_utils
.
normalize_tuple
(
size
,
3
,
'size'
)
self
.
input_spec
=
InputSpec
(
ndim
=
5
)
super
(
UpSampling3D
,
self
)
.
__init__
(
**
kwargs
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
dim1
=
self
.
size
[
0
]
*
input_shape
[
2
]
if
input_shape
[
2
]
is
not
None
else
None
dim2
=
self
.
size
[
1
]
*
input_shape
[
3
]
if
input_shape
[
3
]
is
not
None
else
None
dim3
=
self
.
size
[
2
]
*
input_shape
[
4
]
if
input_shape
[
4
]
is
not
None
else
None
return
(
input_shape
[
0
],
input_shape
[
1
],
dim1
,
dim2
,
dim3
)
elif
self
.
data_format
==
'channels_last'
:
dim1
=
self
.
size
[
0
]
*
input_shape
[
1
]
if
input_shape
[
1
]
is
not
None
else
None
dim2
=
self
.
size
[
1
]
*
input_shape
[
2
]
if
input_shape
[
2
]
is
not
None
else
None
dim3
=
self
.
size
[
2
]
*
input_shape
[
3
]
if
input_shape
[
3
]
is
not
None
else
None
return
(
input_shape
[
0
],
dim1
,
dim2
,
dim3
,
input_shape
[
4
])
def
call
(
self
,
inputs
):
return
K
.
resize_volumes
(
inputs
,
self
.
size
[
0
],
self
.
size
[
1
],
self
.
size
[
2
],
self
.
data_format
)
def
get_config
(
self
):
config
=
{
'size'
:
self
.
size
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
UpSampling3D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
ZeroPadding1D
(
Layer
):
"""Zero-padding layer for 1D input (e.g. temporal sequence).
# Arguments
padding: int, or tuple of int (length 2), or dictionary.
- If int:
How many zeros to add at the beginning and end of
the padding dimension (axis 1).
- If tuple of int (length 2):
How many zeros to add at the beginning and at the end of
the padding dimension (`(left_pad, right_pad)`).
# Input shape
3D tensor with shape `(batch, axis_to_pad, features)`
# Output shape
3D tensor with shape `(batch, padded_axis, features)`
"""
def
__init__
(
self
,
padding
=
1
,
**
kwargs
):
super
(
ZeroPadding1D
,
self
)
.
__init__
(
**
kwargs
)
self
.
padding
=
conv_utils
.
normalize_tuple
(
padding
,
2
,
'padding'
)
self
.
input_spec
=
InputSpec
(
ndim
=
3
)
def
compute_output_shape
(
self
,
input_shape
):
if
input_shape
[
1
]
is
not
None
:
length
=
input_shape
[
1
]
+
self
.
padding
[
0
]
+
self
.
padding
[
1
]
else
:
length
=
None
return
(
input_shape
[
0
],
length
,
input_shape
[
2
])
def
call
(
self
,
inputs
):
return
K
.
temporal_padding
(
inputs
,
padding
=
self
.
padding
)
def
get_config
(
self
):
config
=
{
'padding'
:
self
.
padding
}
base_config
=
super
(
ZeroPadding1D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
ZeroPadding2D
(
Layer
):
"""Zero-padding layer for 2D input (e.g. picture).
This layer can add rows and columns of zeros
at the top, bottom, left and right side of an image tensor.
# Arguments
padding: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding
is applied to height and width.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_height_pad, symmetric_width_pad)`.
- If tuple of 2 tuples of 2 ints:
interpreted as
`((top_pad, bottom_pad), (left_pad, right_pad))`
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, padded_rows, padded_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, padded_rows, padded_cols)`
"""
@interfaces.legacy_zeropadding2d_support
def
__init__
(
self
,
padding
=
(
1
,
1
),
data_format
=
None
,
**
kwargs
):
super
(
ZeroPadding2D
,
self
)
.
__init__
(
**
kwargs
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
if
isinstance
(
padding
,
int
):
self
.
padding
=
((
padding
,
padding
),
(
padding
,
padding
))
elif
hasattr
(
padding
,
'__len__'
):
if
len
(
padding
)
!=
2
:
raise
ValueError
(
'`padding` should have two elements. '
'Found: '
+
str
(
padding
))
height_padding
=
conv_utils
.
normalize_tuple
(
padding
[
0
],
2
,
'1st entry of padding'
)
width_padding
=
conv_utils
.
normalize_tuple
(
padding
[
1
],
2
,
'2nd entry of padding'
)
self
.
padding
=
(
height_padding
,
width_padding
)
else
:
raise
ValueError
(
'`padding` should be either an int, '
'a tuple of 2 ints '
'(symmetric_height_pad, symmetric_width_pad), '
'or a tuple of 2 tuples of 2 ints '
'((top_pad, bottom_pad), (left_pad, right_pad)). '
'Found: '
+
str
(
padding
))
self
.
input_spec
=
InputSpec
(
ndim
=
4
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
if
input_shape
[
2
]
is
not
None
:
rows
=
input_shape
[
2
]
+
self
.
padding
[
0
][
0
]
+
self
.
padding
[
0
][
1
]
else
:
rows
=
None
if
input_shape
[
3
]
is
not
None
:
cols
=
input_shape
[
3
]
+
self
.
padding
[
1
][
0
]
+
self
.
padding
[
1
][
1
]
else
:
cols
=
None
return
(
input_shape
[
0
],
input_shape
[
1
],
rows
,
cols
)
elif
self
.
data_format
==
'channels_last'
:
if
input_shape
[
1
]
is
not
None
:
rows
=
input_shape
[
1
]
+
self
.
padding
[
0
][
0
]
+
self
.
padding
[
0
][
1
]
else
:
rows
=
None
if
input_shape
[
2
]
is
not
None
:
cols
=
input_shape
[
2
]
+
self
.
padding
[
1
][
0
]
+
self
.
padding
[
1
][
1
]
else
:
cols
=
None
return
(
input_shape
[
0
],
rows
,
cols
,
input_shape
[
3
])
def
call
(
self
,
inputs
):
return
K
.
spatial_2d_padding
(
inputs
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
)
def
get_config
(
self
):
config
=
{
'padding'
:
self
.
padding
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
ZeroPadding2D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
ZeroPadding3D
(
Layer
):
"""Zero-padding layer for 3D data (spatial or spatio-temporal).
# Arguments
padding: int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric padding
is applied to height and width.
- If tuple of 3 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)`.
- If tuple of 3 tuples of 2 ints:
interpreted as
`((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim2_pad), (left_dim3_pad, right_dim3_pad))`
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `"channels_first"` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)`
# Output shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)`
"""
@interfaces.legacy_zeropadding3d_support
def
__init__
(
self
,
padding
=
(
1
,
1
,
1
),
data_format
=
None
,
**
kwargs
):
super
(
ZeroPadding3D
,
self
)
.
__init__
(
**
kwargs
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
if
isinstance
(
padding
,
int
):
self
.
padding
=
((
padding
,
padding
),
(
padding
,
padding
),
(
padding
,
padding
))
elif
hasattr
(
padding
,
'__len__'
):
if
len
(
padding
)
!=
3
:
raise
ValueError
(
'`padding` should have 3 elements. '
'Found: '
+
str
(
padding
))
dim1_padding
=
conv_utils
.
normalize_tuple
(
padding
[
0
],
2
,
'1st entry of padding'
)
dim2_padding
=
conv_utils
.
normalize_tuple
(
padding
[
1
],
2
,
'2nd entry of padding'
)
dim3_padding
=
conv_utils
.
normalize_tuple
(
padding
[
2
],
2
,
'3rd entry of padding'
)
self
.
padding
=
(
dim1_padding
,
dim2_padding
,
dim3_padding
)
else
:
raise
ValueError
(
'`padding` should be either an int, '
'a tuple of 3 ints '
'(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad), '
'or a tuple of 3 tuples of 2 ints '
'((left_dim1_pad, right_dim1_pad),'
' (left_dim2_pad, right_dim2_pad),'
' (left_dim3_pad, right_dim2_pad)). '
'Found: '
+
str
(
padding
))
self
.
input_spec
=
InputSpec
(
ndim
=
5
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
if
input_shape
[
2
]
is
not
None
:
dim1
=
input_shape
[
2
]
+
self
.
padding
[
0
][
0
]
+
self
.
padding
[
0
][
1
]
else
:
dim1
=
None
if
input_shape
[
3
]
is
not
None
:
dim2
=
input_shape
[
3
]
+
self
.
padding
[
1
][
0
]
+
self
.
padding
[
1
][
1
]
else
:
dim2
=
None
if
input_shape
[
4
]
is
not
None
:
dim3
=
input_shape
[
4
]
+
self
.
padding
[
2
][
0
]
+
self
.
padding
[
2
][
1
]
else
:
dim3
=
None
return
(
input_shape
[
0
],
input_shape
[
1
],
dim1
,
dim2
,
dim3
)
elif
self
.
data_format
==
'channels_last'
:
if
input_shape
[
1
]
is
not
None
:
dim1
=
input_shape
[
1
]
+
self
.
padding
[
0
][
0
]
+
self
.
padding
[
0
][
1
]
else
:
dim1
=
None
if
input_shape
[
2
]
is
not
None
:
dim2
=
input_shape
[
2
]
+
self
.
padding
[
1
][
0
]
+
self
.
padding
[
1
][
1
]
else
:
dim2
=
None
if
input_shape
[
3
]
is
not
None
:
dim3
=
input_shape
[
3
]
+
self
.
padding
[
2
][
0
]
+
self
.
padding
[
2
][
1
]
else
:
dim3
=
None
return
(
input_shape
[
0
],
dim1
,
dim2
,
dim3
,
input_shape
[
4
])
def
call
(
self
,
inputs
):
return
K
.
spatial_3d_padding
(
inputs
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
)
def
get_config
(
self
):
config
=
{
'padding'
:
self
.
padding
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
ZeroPadding3D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
Cropping1D
(
Layer
):
"""Cropping layer for 1D input (e.g. temporal sequence).
It crops along the time dimension (axis 1).
# Arguments
cropping: int or tuple of int (length 2)
How many units should be trimmed off at the beginning and end of
the cropping dimension (axis 1).
If a single int is provided,
the same value will be used for both.
# Input shape
3D tensor with shape `(batch, axis_to_crop, features)`
# Output shape
3D tensor with shape `(batch, cropped_axis, features)`
"""
def
__init__
(
self
,
cropping
=
(
1
,
1
),
**
kwargs
):
super
(
Cropping1D
,
self
)
.
__init__
(
**
kwargs
)
self
.
cropping
=
conv_utils
.
normalize_tuple
(
cropping
,
2
,
'cropping'
)
self
.
input_spec
=
InputSpec
(
ndim
=
3
)
def
compute_output_shape
(
self
,
input_shape
):
if
input_shape
[
1
]
is
not
None
:
length
=
input_shape
[
1
]
-
self
.
cropping
[
0
]
-
self
.
cropping
[
1
]
else
:
length
=
None
return
(
input_shape
[
0
],
length
,
input_shape
[
2
])
def
call
(
self
,
inputs
):
if
self
.
cropping
[
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
]:,
:]
else
:
return
inputs
[:,
self
.
cropping
[
0
]:
-
self
.
cropping
[
1
],
:]
def
get_config
(
self
):
config
=
{
'cropping'
:
self
.
cropping
}
base_config
=
super
(
Cropping1D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
Cropping2D
(
Layer
):
"""Cropping layer for 2D input (e.g. picture).
It crops along spatial dimensions, i.e. height and width.
# Arguments
cropping: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric cropping
is applied to height and width.
- If tuple of 2 ints:
interpreted as two different
symmetric cropping values for height and width:
`(symmetric_height_crop, symmetric_width_crop)`.
- If tuple of 2 tuples of 2 ints:
interpreted as
`((top_crop, bottom_crop), (left_crop, right_crop))`
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, height, width, channels)` while `"channels_first"`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, cropped_rows, cropped_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch, channels, cropped_rows, cropped_cols)`
# Examples
```python
# Crop the input 2D images or feature maps
model = Sequential()
model.add(Cropping2D(cropping=((2, 2), (4, 4)),
input_shape=(28, 28, 3)))
# now model.output_shape == (None, 24, 20, 3)
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Cropping2D(cropping=((2, 2), (2, 2))))
# now model.output_shape == (None, 20, 16, 64)
```
"""
@interfaces.legacy_cropping2d_support
def
__init__
(
self
,
cropping
=
((
0
,
0
),
(
0
,
0
)),
data_format
=
None
,
**
kwargs
):
super
(
Cropping2D
,
self
)
.
__init__
(
**
kwargs
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
if
isinstance
(
cropping
,
int
):
self
.
cropping
=
((
cropping
,
cropping
),
(
cropping
,
cropping
))
elif
hasattr
(
cropping
,
'__len__'
):
if
len
(
cropping
)
!=
2
:
raise
ValueError
(
'`cropping` should have two elements. '
'Found: '
+
str
(
cropping
))
height_cropping
=
conv_utils
.
normalize_tuple
(
cropping
[
0
],
2
,
'1st entry of cropping'
)
width_cropping
=
conv_utils
.
normalize_tuple
(
cropping
[
1
],
2
,
'2nd entry of cropping'
)
self
.
cropping
=
(
height_cropping
,
width_cropping
)
else
:
raise
ValueError
(
'`cropping` should be either an int, '
'a tuple of 2 ints '
'(symmetric_height_crop, symmetric_width_crop), '
'or a tuple of 2 tuples of 2 ints '
'((top_crop, bottom_crop), (left_crop, right_crop)). '
'Found: '
+
str
(
cropping
))
self
.
input_spec
=
InputSpec
(
ndim
=
4
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
return
(
input_shape
[
0
],
input_shape
[
1
],
input_shape
[
2
]
-
self
.
cropping
[
0
][
0
]
-
self
.
cropping
[
0
][
1
]
if
input_shape
[
2
]
else
None
,
input_shape
[
3
]
-
self
.
cropping
[
1
][
0
]
-
self
.
cropping
[
1
][
1
]
if
input_shape
[
3
]
else
None
)
elif
self
.
data_format
==
'channels_last'
:
return
(
input_shape
[
0
],
input_shape
[
1
]
-
self
.
cropping
[
0
][
0
]
-
self
.
cropping
[
0
][
1
]
if
input_shape
[
1
]
else
None
,
input_shape
[
2
]
-
self
.
cropping
[
1
][
0
]
-
self
.
cropping
[
1
][
1
]
if
input_shape
[
2
]
else
None
,
input_shape
[
3
])
def
call
(
self
,
inputs
):
if
self
.
data_format
==
'channels_first'
:
if
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:]
elif
self
.
cropping
[
0
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
]]
elif
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:]
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
]]
elif
self
.
data_format
==
'channels_last'
:
if
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:,
:]
elif
self
.
cropping
[
0
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
:]
elif
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:,
:]
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
:]
def
get_config
(
self
):
config
=
{
'cropping'
:
self
.
cropping
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
Cropping2D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
class
Cropping3D
(
Layer
):
"""Cropping layer for 3D data (e.g. spatial or spatio-temporal).
# Arguments
cropping: int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric cropping
is applied to depth, height, and width.
- If tuple of 3 ints:
interpreted as two different
symmetric cropping values for depth, height, and width:
`(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)`.
- If tuple of 3 tuples of 2 ints:
interpreted as
`((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop))`
data_format: A string,
one of `"channels_last"` or `"channels_first"`.
The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `"channels_first"` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)`
- If `data_format` is `"channels_first"`:
`(batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)`
# Output shape
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)`
- If `data_format` is `"channels_first"`:
`(batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)`
"""
@interfaces.legacy_cropping3d_support
def
__init__
(
self
,
cropping
=
((
1
,
1
),
(
1
,
1
),
(
1
,
1
)),
data_format
=
None
,
**
kwargs
):
super
(
Cropping3D
,
self
)
.
__init__
(
**
kwargs
)
self
.
data_format
=
K
.
normalize_data_format
(
data_format
)
if
isinstance
(
cropping
,
int
):
self
.
cropping
=
((
cropping
,
cropping
),
(
cropping
,
cropping
),
(
cropping
,
cropping
))
elif
hasattr
(
cropping
,
'__len__'
):
if
len
(
cropping
)
!=
3
:
raise
ValueError
(
'`cropping` should have 3 elements. '
'Found: '
+
str
(
cropping
))
dim1_cropping
=
conv_utils
.
normalize_tuple
(
cropping
[
0
],
2
,
'1st entry of cropping'
)
dim2_cropping
=
conv_utils
.
normalize_tuple
(
cropping
[
1
],
2
,
'2nd entry of cropping'
)
dim3_cropping
=
conv_utils
.
normalize_tuple
(
cropping
[
2
],
2
,
'3rd entry of cropping'
)
self
.
cropping
=
(
dim1_cropping
,
dim2_cropping
,
dim3_cropping
)
else
:
raise
ValueError
(
'`cropping` should be either an int, '
'a tuple of 3 ints '
'(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop), '
'or a tuple of 3 tuples of 2 ints '
'((left_dim1_crop, right_dim1_crop),'
' (left_dim2_crop, right_dim2_crop),'
' (left_dim3_crop, right_dim2_crop)). '
'Found: '
+
str
(
cropping
))
self
.
input_spec
=
InputSpec
(
ndim
=
5
)
def
compute_output_shape
(
self
,
input_shape
):
if
self
.
data_format
==
'channels_first'
:
if
input_shape
[
2
]
is
not
None
:
dim1
=
input_shape
[
2
]
-
self
.
cropping
[
0
][
0
]
-
self
.
cropping
[
0
][
1
]
else
:
dim1
=
None
if
input_shape
[
3
]
is
not
None
:
dim2
=
input_shape
[
3
]
-
self
.
cropping
[
1
][
0
]
-
self
.
cropping
[
1
][
1
]
else
:
dim2
=
None
if
input_shape
[
4
]
is
not
None
:
dim3
=
input_shape
[
4
]
-
self
.
cropping
[
2
][
0
]
-
self
.
cropping
[
2
][
1
]
else
:
dim3
=
None
return
(
input_shape
[
0
],
input_shape
[
1
],
dim1
,
dim2
,
dim3
)
elif
self
.
data_format
==
'channels_last'
:
if
input_shape
[
1
]
is
not
None
:
dim1
=
input_shape
[
1
]
-
self
.
cropping
[
0
][
0
]
-
self
.
cropping
[
0
][
1
]
else
:
dim1
=
None
if
input_shape
[
2
]
is
not
None
:
dim2
=
input_shape
[
2
]
-
self
.
cropping
[
1
][
0
]
-
self
.
cropping
[
1
][
1
]
else
:
dim2
=
None
if
input_shape
[
3
]
is
not
None
:
dim3
=
input_shape
[
3
]
-
self
.
cropping
[
2
][
0
]
-
self
.
cropping
[
2
][
1
]
else
:
dim3
=
None
return
(
input_shape
[
0
],
dim1
,
dim2
,
dim3
,
input_shape
[
4
])
def
call
(
self
,
inputs
):
if
self
.
data_format
==
'channels_first'
:
if
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:]
elif
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
]]
elif
self
.
cropping
[
1
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:]
elif
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:]
elif
self
.
cropping
[
0
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
]]
elif
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
]]
elif
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:]
return
inputs
[:,
:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
]]
elif
self
.
data_format
==
'channels_last'
:
if
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:,
:]
elif
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
],
:]
elif
self
.
cropping
[
1
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:,
:]
elif
self
.
cropping
[
0
][
1
]
==
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:,
:]
elif
self
.
cropping
[
0
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:,
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
],
:]
elif
self
.
cropping
[
1
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:,
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
],
:]
elif
self
.
cropping
[
2
][
1
]
==
0
:
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:,
:]
return
inputs
[:,
self
.
cropping
[
0
][
0
]:
-
self
.
cropping
[
0
][
1
],
self
.
cropping
[
1
][
0
]:
-
self
.
cropping
[
1
][
1
],
self
.
cropping
[
2
][
0
]:
-
self
.
cropping
[
2
][
1
],
:]
def
get_config
(
self
):
config
=
{
'cropping'
:
self
.
cropping
,
'data_format'
:
self
.
data_format
}
base_config
=
super
(
Cropping3D
,
self
)
.
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
# Aliases
Convolution1D
=
Conv1D
Convolution2D
=
Conv2D
Convolution3D
=
Conv3D
SeparableConvolution1D
=
SeparableConv1D
SeparableConvolution2D
=
SeparableConv2D
Convolution2DTranspose
=
Conv2DTranspose
Deconvolution2D
=
Deconv2D
=
Conv2DTranspose
Deconvolution3D
=
Deconv3D
=
Conv3DTranspose
# Legacy aliases
AtrousConv1D
=
AtrousConvolution1D
AtrousConv2D
=
AtrousConvolution2D